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Characteristics	and	dynamics	of	wind-driven	upwelling	in	the	Alaskan	Beaufort	Sea

Introduction
The Beaufort shelfbreak jet	advects Pacific water	from	Barrow	Canyon	
towards	the	Canadian	Arctic	Archipelago. It	abuts	the	eastward-flowing	
Atlantic	Water	boundary	current	located	offshore	and	downslope.	Driven	
by	easterly	winds, upwelling	is	common	along	the	Beaufort	shelfbreak	and	
takes	place	throughout	the	year	during	varying	ice	conditions.	It	is	one	of	
the	primary	mechanisms	of	shelf-basin	exchange	in	the	Alaskan	Beaufort	
Sea.	This	study	uses 6	years	of	mooring	data to	quantify	various	aspects	of	
upwelling	across	the	Beaufort	shelfbreak.	

Upwelling
1. We	identify	upwelling	as	times	when	the	near-bottom	potential	density
at mooring	BS3 in	the	center	of	the	shelfbreak	jet	is	greater	than	the
climatological	monthly	mean (6 years data)	and	the alongcoast	wind	is	
easterly	(negative). A total of 115 events were identified.
2. The	upwelling	index	(UI) is	defined	as the	time	integral	of	the	near-
bottom	potential	density	anomaly over	each	event.	

Seasonal influences on upwelling
PW-type upwelling: only Pacific water is upwelled, occurs during the warm months.
AW-type upwelling: Atlantic water is also	upwelled, common in spring and winter.
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Fig. 1. Locations of the 
moorings and the 
schematic circulation. 

General characteristics
We	defined	a	normalized	time (tn),	which	ranges	from	0	at	the	beginning	of	
each	upwelling	event	to	1	at	the	end, and considered as	well	the	conditions	
just	prior	to	and	after	the	upwelling (-0.25	≤	tn ≤	1.25).	We then constructed
a composite event by averaging	the 115 events.
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Fig. 3. Composite upwelling 
event of (a) alongcoast wind and
(b) potential density anomaly.
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(a) Temperature
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(b) Salinity
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(c) Buoyancy frequency (N2)
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Fig. 4. Composite upwelling event of
(a) temperature, (b) salinity, and (c)
buoyancy frequency

Velocity structure
1. When	the	easterly	wind	is	strongest	the	entire	shelfbreak jet	is	reversed	
to	the	west.
2. The	cross-isobath flow	has	a	three-layer	structure	with	onshore	flow	in	
the	surface	layer,	offshore	flow	in	the	middle	of	the	water	column,	and	
onshore	flow	near	the	bottom.	
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(a) Along−isobath velocity
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(c) Cross−isobath velocity

Fig. 5. Composite upwelling event of along-isobath velocity and cross-isobath velocity. 
Both the depth-mean and depth-dependent fields are shown. 
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Fig. 2. (a) Value of the 
upwelling index versus 
cumulative Ekman 
transport, defined as 
∫ 𝜏# 𝑡 𝑑𝑡
&'(&)
&*(&)

/(𝜌.𝑓).
(b) Upwelling index versus 
local wind stress curl for 
all of the upwelling events. 

The	upwelling	is	not	related	to	the	local	wind	stress	curl,	but	instead	is
associated	with	along-coast wind.

3. The	orientation	of	the	reversed	shelfbreak jet	is	slightly	onshore	which	
overwhelms	the	cross-isobath surface	Ekman	transport.
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AW−type upwelling
PW−type upwelling Fig. 6. Seasonal variation of the 

occurrence of AW-type upwelling and 
PW-type upwelling events. 

1. The	primary	factor	determining	the	type	of	upwelling	is	the	seasonal	
variation	in	the	PW-AW	interface	depth	offshore	of	the	shelfbreak.
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Fig. 7. Time series of monthly-
averaged PW-AW interface depth and 
monthly area-averaged wind stress 
curl.

Fig. 8. Spatial distribution of the 
correlation coefficient of wind stress 
curl at each point versus the PW-AW 
interface depth from the moorings. 

2. The	wind	stress	curl	near	the	boundary	is	strongly	linked	to	the	variation	
in	PW-AW	interface	depth: negative	wind	stress	curl	pumps	the	interface	
down	during	summer,	and	positive	curl	lifts	it	in	winter.	

3. The	zero-curl	line	is	located	south	of	the	mooring	array	during	the	
summer	months	and	north	of	it	remainder	of	the	year.	
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Fig. 9. Latitude-time distribution of 
the climatological monthly mean 
wind stress curl close to 152°W for 
the time period 2000 – 2013.
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Fig. 10. Composite sea level pressure 
(mb) for the months when wind stress
curl is (a) positive, and (b) negative.

4. The	two	atmospheric	centers	of	action	– the	Beaufort	High	(BH) and	the	
Aleutian	Low (AL) – control	the	variation	of	local	wind	stress	curl,	which	in	
turn	alters	the	PW-AW	interface	depth	and	dictates	the	type	of	upwelling.
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