Hydrographic Structure and Modification of Pacific Winter Water on the Chukchi Sea Shelf in Late Spring

A. Pacini¹, R.S. Pickart², G.W.K. Moore³, K. Våge⁴

Introduction

The high nutrient content of Pacific-origin winter water spurs primary production in the Chukchi Sea (e.g. Hill et al., 2005). Notably, during the 2011 ICESCAPE cruise to the region, massive phytoplankton blooms were discovered underneath 1-n thick, fully consolidated sea ice. The Chlorophyll levels in the water column were some of the highest ever observed in the global ocean (Arrigo et al., 2014). Therefore, it is important to understand the physical drivers responsible for these blooms, including the circulation of winter water on the shelf. Here we analyze data from a May-June 2014 cruise that investigated the pre-, during, and post-bloom conditions.

Winter Water

As seen in the volumetric Temperature-Salinity plot in Figure 2, the Chukchi Sea consisted mostly of winter water during the late-spring cruise. Winter water is defined as water with temperatures colder than -1.6°C and salinity greater than 31.5. Winter water has a high nutrient content and is therefore conducive for phytoplankton growth.

Structure of the Water Column

The water column was predominantly composed of high nutrient winter water (Figure 2). In addition, the shelf could be characterized predominantly as a two-layer system consisting of a surface mixed layer atop a bottom boundary layer, separated by a sharp interface (Figure 3 and 4). In most instances the density change across the interface was weak, and winter water was present in both the top and bottom mixed layers.

Bottom Boundary Layers

Previous theory (Trowbridge and Lentz, 1991; Lentz and Trowbridge, 1991) has demonstrated that the height of bottom mixed layers is sensitive to whether the interior flow is upwelling-favorable or downwelling-favorable. Consistent with this theory, we found that upwelling favorable conditions exhibited small bottom boundary layers with no dependence on bottom slope, while downwelling conditions exhibited large bottom boundary layers with a dependence on bottom slope—the steeper the topography, the larger the bottom boundary layer (Figure 5).

Surface Mixed Layers

The weak interface between the surface and bottom mixed layers (Figures 3 and 4) implies that the water column was poised for upwelling within a re-freezing lead or polynya. To investigate this we applied a simple polynya model coupled to the one-dimensional PWP mixed-layer model (Price et al., 1986). This analysis showed that upwelling to the bottom would occur on the order of hours for realistic surface forcing. The overturn time is correlated both to the height of the surface mixed layer and the density jump between the two layers (Figure 6). A parameter defined as the product between the size of the surface mixed layer and the size of the density jump is highly correlated to the overturn time at each station (Figure 7).

Conclusions

- During late spring, the Chukchi Sea is pre-conditioned for the development of under-ice phytoplankton blooms.
- The water column can be characterized as a two-layer system where the surface mixed-layer is separated from the bottom boundary layer by a density interface that is generally weak.
- Using a polynya model driven by realistic surface forcing, coupled to a one-dimensional mixed-layer model, it was demonstrated that the water column can overturn quickly when leads in the ice open up. The resulting convection would stir nutrients from the sediments into the water column, further increasing the nutrient content of the winter water and spurring productivity.

Acknowledgements

The authors thank Caroline Norbert for assistance with programming. Support for the research was provided by the WHOI Academic Programs Office and Summer Student Fellowship program, as well as the National Science Foundation REU program.

Author Institutions

1. Yale University, New Haven, CT
2. Woods Hole Oceanographic Institution, Woods Hole, MA
3. University of Toronto, Canada
4. University of Bergen, Norway