Introduction Backward trajectories

Oceanic response

Deep convection in the open ocean can occur when a unique setTdfe 3D trajectory model Lagranto [3] was applied to compute backwardsmoored profiler (MP) programmed to obtain twice-daily profiles of
oceanic and atmospheric conditions - a preconditioned water coluraim,parcel trajectories terminating above the southern Irminger Sea. Témperature and salinity between 60 and 180@vas deployed in the
cyclonic circulation and strong atmospheric forcing - are satisfied. Amongnters1994 to 2002 were considered for this analysis, resulting in 28%8uthwesirminger Sea (Fig. 1) for the winter of 2002-3. Mixed-layers

the few locations where these requirements are met is the Labratlajectoriedrom 101 tip jet events (Fig. 3).

Sea, where the intermediate water mass known as Labrador Sea Water

(LSW) originates. Recently the hypothesis that LSW is also forme - Tip jet backward trajectories
In the southern Irminger Sea has been rekindled [1]. Regarding
atmospheric forcing, a mechanism capable of enhancing the heat

from the southern Irminger Sea exists in the form of a strong, but narr

and intermittent wind pattern called the Greenland tip jet [2, Fig. 1].

a second source of LSW exists, this would influence our understanc

of the ventilation of the North Atlantic and its branch of the meridion: *0g
overturning circulation.
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QuikSCAT winds, evening December 5, 2002

pelowv 60 m were observed between November and April (Fig. 6). Bulk
neat fluxes were computed for the mooring site using timeseries of wind,
numidity and air and sea surface temperatures from various sources in
order to include the effect of the tip jet events. The resulting “best
estimate” turbulent heat flux timeseries were used to force a 1D oceanic
mixed-layer model [6, hereafter PWP], to be compared with standard
NCEP forcing. Figure 6 shows timeseries of mixed-layer depth from the
MP and from the PWP model. Removal of the tip jets from the forcing
timeseriesesulted in a 20% shallower mixed-layer and indicates that they
contributed significantly to its deepening.

Observed and modeled mixed-layer depths for the winter of 2002-3
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Figure 3:2-day history of tip jet air parcels terminating at 950 and 8@ above the 200
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N ‘ / southern Irminger Sea.
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Figure 1:QuikSCAT wind speed (color) and vectors showing a tip jet on 5 December,
2002. The wind speed at the mooring site (white star) during this event was/87 62°N -
Orography is rendered in grayscale.
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Tip jet events were objectively determined using an EOF approach
applied to ERA-40 reanalyis data. A total of 586 events were detected
duringthe winters (November-April) of the ERA-40 period (1957-2002).
Comparison with high-resolution QuikSCAT data from the period of
overlap (1999-2002) indicates that about 90% of the tip jets that took place
were detected in the lower resolution ERA-40 data. Both the NAO index
and the latitude of the Icelandic Low were significantly correlated with
the number of tip jets per winter (0.71 and 0.69 respectively). 60°N 1
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Composite averages during the 24 hour period surrounding an event (Fig.

2) portray the tip jet as an intense, short-lived phenomenon. Peak wind \
: : . 58°N

speeds approaching 20/s (estimated 30n/strue speed) were sustained 60°W 550\ 50°W A5O\W 20°W

for less than a day (top). Each tip jet event was associated with a parent

low pressure system, typically occupying the region immediately eastfagure 4:Alongtrack pressure change (top) and velocity (bottom) of tip jet trajectori

southern Greenland (middle). The turbulent heat fluxes were on aver@geinating at 950 and 90@Pa over the southern Irminger Sea.
more than 3 times greater during tip jet events compared with background
levels (bottom), and the integrated effect of many tip jets during the course

of a winter are important for the evolution of the oceanic mixed-layer. Mechanism of tip jet generation

A slice across the composite tip jet (not shown) indicates thatthereisol 150!
Wind speed and vectors a vertical coherence with the troposphere-level jet stream, and hence —Tip jet events
suggests a connection. The atmospheric conditions in terms of jet stre 2000 o = ~0 "ot Febos Maros Ap'r% MaIyQS JUNn95
and cyclone residence during tip jets are contrasted with the mean wil
conditions (Fig. 5) using a jet stream [4] and a cyclone [5] data base. Figure 7:PWP results for winter 1994-5.
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Figure 2. Composites of wind speed, sea level pressure and turbulent heat fluaco
showing the evolution of the Greenland tip jet.
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Figure6: Observations and PWP results for winter 2002-3.

The good agreement between model and data encouraged application o
the PWP model to a more robust, high-NAO winter. Deep convection
occurredn the Labrador Sea in the winter of 1994-5. Hydrographic data
collected in the Irminger Sea the following spring and summer suggests
that convection occurred in that basin as well, to a deptk ®700m [1].

A best estimate heat flux timeseries was computed for winter 1994-5 and
used to force the PWP model (Fig. 7). At the end of the convective season,
the mixed-layer had reached a depth exceeding 1700

Modeled mixed—-layer depths for the winter of 1994-5
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Conclusions

e TIp jets are intense, narrow and intermittent wind events east of Cape
Farewell that occur on average 13 times per winter.

e Interaction between Greenland’s high orography, presence of a cyclone
to the east, and the jet stream to the south may generate tip jets.

e Tip jets cause elevated turbulent heat fluxes and are important for the
seasonal evolution of the mixed-layer of the southern Irminger Sea.

e 1D mixed-layer model results add to the growing body of studies
supporting the hypothesis that deep convection can take place in the
Irminger Sea during high-NAO winters.
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