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Introduction

Deep convection in the open ocean can occur when a unique set of oceanic
and atmospheric conditions - a preconditioned water column, cyclonic
circulationand strong atmospheric forcing - are satisfied. Among the few
locations where these requirements are met is the Labrador Sea, where the
intermediate water mass known as Labrador Sea Water (LSW) originates.
Recentlythe hypothesis that LSW is also formed in the southern Irminger
Sea has been rekindled1. Indirect evidence indicates that deep convection
may have taken place there during sufficiently strong, high-NAO winters.
Cyclonic circulation and a preconditioned water column are features
of the Irminger Sea, and a mechanism capable of enhancing the heat
fluxes from the southern Irminger Sea exists in the form of a strong,
but narrow and intermittent wind pattern called the Greenland tip jet2;3

(Fig. 1). This study seeks to elucidate the atmospheric conditions leading
to tip jet events using the ERA-40 reanalysis data and a trajectory model.
The impact of the events in dictating the evolution of the wintertime
mixed-layer in the southern Irminger Sea is investigated using in-situ
moored profiler data and application of a one-dimensional mixed-layer
model. A second source of LSW would influence our understanding of
the ventilation of the North Atlantic and its branch of the meridional
overturning circulation.
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Figure 1:QuikSCAT wind speed (color) and vectors showing a tip jet on 5 December,

2002. The wind speed at the mooring site (white star) during this event was 37m/s.

ERA-40 tip jet catalog

Tip jet events were objectively determined using an empirical orthogonal
function (EOF) approach and a wind speed and direction criterion. A
total of 531 events were detected during the winters (November-April)
of the ERA-40 period (1957-2002). Comparison with high-resolution
QuikSCAT data from the period of overlap (1999-2002) indicates that
about 90% of the tip jets that took place were detected in the lower
resolution ERA-40 data. No false positives were reported. The ERA-
40 and QuikSCAT maximum tip jet winds were highly correlated (0.78),
but the satellite data showed that the ERA-40 winds were significantly
underestimated. Correlations were also found between the total number
of tip jet events per winter and both the NAO index and the latitude of the
Icelandic Low (both 0.67).

Composite averages during the 24 hour period surrounding an event
(Fig. 2) portray the tip jet as an intense, short-lived phenomenon. Peak
wind speeds approaching 20m/s were sustained for less than a day (top).
Each tip jet event was associated with a parent low pressure system,
typically occupying the region immediately east of southern Greenland
(middle). The turbulent heat fluxes were on average more than 3 times
greater during tip jet events compared with background levels (bottom).
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Sea level pressure with contours of cyclone coverage (%)
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Figure 2: Composites of wind speed, sea level pressure and turbulent heat fluxes

showing the evolution of the Greenland tip jet.

Backward trajectories

The 3D trajectory model Lagranto4 was used to compute backwards air
parceltrajectories terminating above the southern Irminger Sea, a region
of weak water column stratification where deep convection is believed
to occur during high-NAO winters1. The winters 1994 to 2002 were
consideredfor this analysis, resulting in 2819 trajectories from 101 tip
jet events (Fig. 3).

Figure 3:The Lagranto 5-day history of all air parcels terminating at 950 and 900hPa

above the southern Irminger Sea during winter 2001-2 (red trajectories) shows that nearly

theentire domain is capable of supplying this region. However, during the tip jet events

of 1994-2002 all of the air parcels originated from a region west of Greenland (blue

trajectories).

The pressure change and velocity were computed along each trajectory,
gridded and displayed in Figure 4. Only trajectories with a terminal wind
speed greater than 20m/s and a direction deviating at most 30◦ from east
are included in order to capture the trajectories of those air parcels that
actuallyformed the tip jets. The along-track pressure change (top, color)
indicates that some sinking is occurring over southern Greenland, but
that the vast majority of trajectories actually pass south of Cape Farewell
(contours). The acceleration of air parcels due to the deflection around
Greenland stands out (bottom, color).
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Figure 4:Along-track pressure change (top) and velocity (bottom) of tip jet trajectories

terminating at 950 and 900hPa over the southern Irminger Sea.
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Oceanic response

A moored profiler (MP) programmed to obtain twice-daily profiles of
temperatureand salinity between 60 and 1800m was deployed in the
southwestIrminger Sea (Fig. 1) for the winter of 2002-3. Mixed-layers
below 60m were observed between November and April (Fig. 5).

Bulk heat fluxes were computed for the mooring site using timeseries of
wind, humidity and air and sea surface temperatures from various sources
in order to include the effect of the tip jet events. The resulting “best
estimate”turbulent heat flux timeseries were used to force a 1D oceanic
mixed-layer model5 (hereafter PWP). Figure 5 shows timeseries of mixed-
layer depth from the MP and from the PWP model. For comparison,
the model was also forced with NCEP fluxes (green) as well as the best
estimate fluxes with the tip jets removed (red). Driven with the best
estimatefluxes, the mixed-layer model simulates the envelope of the
observed mixed-layer depth fairly well, including the rapid deepening
during February associated with the integrated effect of 7 tip jets occurring
in quick succession that month. The final depth of convection for the
winterof 2002-3 (∼400m) also agrees well with the MP data. Removal of
the tip jets from the forcing timeseries resulted in a 20% shallower mixed-
layer and indicates that they contributed significantly to its deepening.
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Figure 5:Data and PWP results for winter 2002-3.

The good agreement between model and data encouraged application of
the PWP model to a more robust, high-NAO winter. Deep convection
occurred in the Labrador Sea in the winter of 1994-5. Hydrographic data
collected in the Irminger Sea the following spring and summer suggests
that convection occurred in that basin as well, to a depth of∼1700m1.
A best estimate heat flux timeseries was computed for winter 1994-5 and
used to force the PWP model (Fig. 6). At the end of the convective season,
the mixed-layer had reached a depth exceeding 1700m.
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Figure 6:PWP results for winter 1994-5.

Conclusions

• Tip jets are intense, but narrow and intermittent wind phenomena that
commonly occur east of Cape Farewell during winter

• Tip jets cause elevated turbulent heat fluxes and are important for the
seasonal evolution of the mixed-layer of the southern Irminger Sea

• 1D mixed-layer model results add to the growing body of studies
supporting the hypothesis that deep convection can take place in the
Irminger Sea during high-NAO winters
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