THE JOINT RUSSIAN-AMERICAN LONG-TERM CENSUS OF THE ARCTIC (RUSALCA)

Joint Bering/Chukchi Sea Expedition 9-24 August 2004 CTD Data Processing Report

A SeaBird model SBE911+ profiler from WHOI was equipped with a transmissometer, fluorometer, altimeter, SBE43 dissolved oxygen sensor, dual 300 KHz lowered ADCP, 21 position rosette with 10 liter Nisken bottles and a mini-video plankton recorder. Seventy five vertical profiles of temperature, conductivity, fluorescence, transmissivity, and nitrate and water samples along several transects of stations crossed major water masses in the northern Bering Sea, western and eastern channels of Bering Strait and several transects across the Chukchi Sea. The following table lists stations in the order they were taken along with summary information including position, time, and bottom depth.

	Sequence Number	Station Number	Latitude Degrees N (GPS)	Long Degrees W (GPS)	Date (GMT)	Time (GMT)	Deepest Pressure (db)	CTD Serial #	Bottom Depth* (m)
-	1	6	65 40.369	168 17.740	10-Aug-04	15:37:54	45.2	576	47.6
	2	7	65 47.283	168 34.405	10-Aug-04	22:53:55	51.1	576	53.9
	2 3	8	65 52.479	169 6.129	11-Aug-04	8:09:06	42.6	576	45.2
	4	9	65 56.671	169 27.479	11-Aug-04	10:33:45	50.0	576	50.3
	5	10	66 0.242	169 36.208	11-Aug-04	12:26:20	48.9	576	49.8
	6	10B	66 0.215	169 35.565	11-Aug-04	14:07:03	14.8	576	51.2
	7	11	66 55.794	170 59.773	12-Aug-04	1:56:33	40.0	576	39.9
	8	12	67 11.894	170 18.215	12-Aug-04	9:39:44	45.5	576	45.2
	9	13	67 25.952	169 37.542	12-Aug-04	12:56:54	45.6	576	48.0
	10	14	67 38.178	169 2.621	12-Aug-04	21:05:18	49.0	576	49.1
	11	15	67 52.346	168 19.073	13-Aug-04	2:49:03	52.7	576	54.8
	12	18	68 56.992	166 54.727	14-Aug-04	6:45:59	43.4	664	44.0**
	13	19	69 1.352	167 55.346	14-Aug-04	15:11:47	48.2	664	48.7**
	14	20	69 0.372	168 53.686	14-Aug-04	18:39:01	50.9	576	52.8
	15	21	68 53.135	169 36.428	15-Aug-04	3:09:52	51.4	576	54.8
	16	22	68 45.476	170 25.105	15-Aug-04	6:16:38	54.4	576	55.2
	17	23	68 31.345	171 27.712	15-Aug-04	11:25:46	53.1	576	54.1
	18	24	68 21.435	172 20.687	15-Aug-04	21:20:12	47.0	576	50.7
	19	25	67 52.217	172 33.054	16-Aug-04	4:05:31	45.8	576	47.5
	20	26	67 40.723	173 11.502	16-Aug-04	10:53:07	45.4	576	47.7
	21	27	67 24.491	173 36.169	16-Aug-04	16:51:32	32.7	576	33.9
	22	A1R	65 52.559	169 15.317	17-Aug-04	9:42:28	45.0	576	47.4
	23	A1U	65 54.410	169 25.657	17-Aug-04	11:06:17	47.9	576	50.2
	24	106	70 44.717	175 32.051	18-Aug-04	19:20:16	66.2	576	68.7
	25	44	70 59.137	175 58.824	19-Aug-04	5:24:40	51.4	576	53.3
	26	45	70 57.062	175 46.723	19-Aug-04	6:40:44	52.9	576	55.9
	27	46	70 55.063	175 37.048	19-Aug-04	17:53:59	55.6	576	58.2
	28	47	70 53.255	175 26.542	19-Aug-04	8:48:32	32.8	576	66.5
	29	48	70 52.210	175 15.149	19-Aug-04	10:08:35	67.8	576	70.3
	30	49	70 52.351	175 6.624	19-Aug-04	10:57:39	64.6	576	68.5
	31	50	70 52.718	174 58.237	19-Aug-04	11:58:51	63.6	576	65.9
	32	51	70 53.035	174 50.002	19-Aug-04	12:48:42	61.4	576	63.9
	33	52	70 53.394	174 41.947	19-Aug-04	13:32:23	61.6	576	64.5
	34	53	70 53.843	174 33.845	19-Aug-04	14:17:19	66.2	576	69.4
	35	54	70 54.238	174 25.692	19-Aug-04	15:00:40	66.7	576	69.0
	36	55	70 54.694	174 17.321	19-Aug-04	15:42:16	60.1	576	62.5
	37	56	70 55.014	174 9.360	19-Aug-04	16:20:23	46.3	576	49.2
	38	57	70 55.395	174 1.104	19-Aug-04	17:02:50	40.0	576	42.8
	39	58	71 24.463	174 21.127	19-Aug-04	20:22:40	50.4	576	53.2
	40	59	71 24.216	174 29.364	19-Aug-04	21:16:02	75.9	576	78.3
	41	60	71 24.073	174 37.857	19-Aug-04	21:54:55	81.3	576	84.2
	42	61	71 23.903	174 46.367	19-Aug-04	22:32:28	79.1	576	80.6
	43	62 62	71 23.674	174 55.004	19-Aug-04	23:10:57	62.2	576	65.8
	44 45	63	71 23.426	175 3.578	19-Aug-04	23:48:15 0:32:52	55.9 40.2	576	57.9 52.3
	45 46	64 65	71 23.426	175 12.330	20-Aug-04		49.3	576	
	46 47	65 66	71 23.477	175 20.789	20-Aug-04	1:12:36	43.0	576	45.5
	47 48	66 67	71 23.257 71 45.223	175 28.966 176 12.616	20-Aug-04 20-Aug-04	1:53:21 6:16:23	33.5 39.5	576 576	33.6 39.9
	48 49	67 68	71 45.225 71 46.542	176 5.434	20-Aug-04 20-Aug-04	6:55:14	39.3 42.7	576 576	39.9 43.3
	49 50	69	71 40.342	175 58.077	20-Aug-04 20-Aug-04	7:33:35	42.7 48.5	576 576	43.3 49.0
	51	70	71 49.477	175 50.544	20-Aug-04 20-Aug-04	8:14:57	48.5 54.6	576	49.0 55.0
	51	/0	/1 7/.4//	175 50.544	20-Aug-04	0.14.37	57.0	570	55.0

52	71	71 50.996	175 43.895	20-Aug-04	8:55:38	56.9	576	57.3
53	72	71 52.469	175 36.559	20-Aug-04	9:33:26	62.2	576	62.5
54	73	71 53.956	175 29.294	20-Aug-04	10:13:40	66.8	576	67.4
55	74	71 55.398	175 22.040	20-Aug-04	10:57:40	69.4	576	70.0
56	75	71 57.004	175 14.969	20-Aug-04	11:59:36	72.7	576	73.1
57	76	71 58.451	175 7.446	20-Aug-04	12:40:55	70.1	576	70.5
58	77	72 0.022	175 0.198	20-Aug-04	13:21:28	68.2	576	68.6
59	78	72 1.424	174 52.588	20-Aug-04	14:01:18	64.4	576	64.7
60	79	72 2.908	174 45.454	20-Aug-04	14:40:51	57.7	576	58.2
61	80	72 21.193	175 15.229	20-Aug-04	17:35:52	48.3	576	47.8
62	81	72 20.506	175 23.837	20-Aug-04	18:22:11	57.9	576	58.3
63	82	72 20.030	175 32.707	20-Aug-04	19:06:40	78.2	576	78.3
64	83	72 19.710	175 41.432	20-Aug-04	19:52:20	79.7	576	79.9
65	84	72 19.241	175 50.333	20-Aug-04	20:44:50	90.5	576	90.5
66	85	72 18.881	175 59.058	20-Aug-04	21:44:22	98.4	576	98.3
67	86	72 18.491	176 7.908	20-Aug-04	22:58:27	81.9	576	82.0
68	87	72 18.064	176 16.800	20-Aug-04	23:49:11	72.0	576	72.2
69	88	72 17.839	176 25.682	21-Aug-04	0:47:00	72.6	576	72.5
70	89	72 17.419	176 30.735	21-Aug-04	1:57:18	70.0	576	70.1
71	85B	72 19.427	175 59.957	21-Aug-04	8:46:27	96.4	576	98.2
72	73B	71 55.460	175 28.645	21-Aug-04	16:34:39	68.6	576	69.2
73	62B	71 23.513	174 52.271	22-Aug-04	1:26:48	73.8	576	74.6
74	58B	71 24.529	174 21.672	22-Aug-04	5:13:58	53.8	576	54.6
75	107	70 54.442	172 46.349	22-Aug-04	14:56:02	37.1	576	39.2
				-				
	-							

* bottom depth computed by converting deepest pressure that had a good altimeter reading

to depth and adding the altimeter reading to that depth

** marks stations with no altimeter; bottom = deepest pressure converted to depth + 1 meter

Salinity and Temperature Quality Control

At sea, CTD data were run through standard post-acquisition SeaBird processing routines. At WHOI, the resulting files were then processed with a series of Matlab scripts to review sensor performance, produce a one-decibar-averaged series, and to remove bad conductivity and/or temperature values as indicated by density inversions. Bottles were not used to calibrate the conductivity sensors, since few bottles were taken and the ones that were taken, were close to the surface and therefore not useful for calibration purposes.

Profiles of salinity, temperature, and density versus pressure were created for each ctd station. These were reviewed for density inversions of greater than .002 kg/m³. If an inversion was detected, salinity derived from the primary conductivity sensor was linearly interpolated between the bounding good salinity values. Density was recalculated and plotted, and, if inversions were still detected, temperature from the primary temperature sensor was de-spiked at that point in the profile. Very few points required this kind of editing. They are listed in the following table.

CTD Station Number	Pressures where Conductivity Was interpolated	Pressures where Temperature Was interpolated
6 7 8	12;13;bottom 23;26;28;30;31;33;35;38;bottom 29;38	26;28;30;33;35
9 10 15 18	10 17;18;19	
19 25 26	3;4;16;17 34 10;11	3;4;15;16 4 11
A1R A1U 52 55	3 4 52 42	4
64 69 73 75	17 1;2;22 5;6;7 67;68	
76 81 87	28;30;31 6 8;9;33;36	30
88 89 62B	33 32 26	
	I	

Bottom records were manually removed from stations 6 and 7 since they could not be interpolated.

Oxygen Quality Control

Profile plots of one-decibar-averaged oxygen versus depth were made and reviewed. It was noticed that occasionally the values recorded for Oxygen Current (oxcur), Oxygen Current Slope (docdt), and Oxygen all zeroes. These zeroes did not appear in the two-decibar-averaged profiles, so were introduced either due to too few points for a correct oxygen to be determined or a glitch in the averaging routine. To correct them, Oxygen was linearly interpolated, a -9.00000 bad value was placed in docdt and oxcur and a code 7 for interpolation inserted in column 8 of the quality word at the end of the record.

Locations of Oxygen interpolation:

Station	Pressure where Oxygen
	Was interpolated
10	31
74	57
82	64, 71
83	74
84	3, 76
85	3

Turbidity Quality Control

Using a similar process as described for Oxygen, turbidity was reviewed for data quality. Where a turbidity value changed dramatically from the one before or after it, and where no such dramatic change was noted in any other measured value at the same location, turbidity was linearly interpolated and a 7 for interpolation placed in column 10 of the quality word at the end of the record.

Locations of turbidity interpolation:

Station	Pressure where Turbidity Was interpolated
45	37
78	54
85B	64, 65

Samples of the format of the final downcast series for each of the instrument configurations follow:

For all stations, except 18-19;

Final Conductivity and Temperature Station:6 Khormov Latitude: 65.6728 Longitude: -168.2957 Date: 081004 Pres T90(1) T90(2) Sal(1) Sal(2) OxCur docdt OXYG Flur Turbidity Altimeter nscans wocecode 1.0 13.58850 13.66290 27.66650 27.59560 2.665900 -0.035060 5.299 1.5058 0.2480 49.91 32 22222111111 2.0 13.55660 13.54910 27.70390 27.72430 2.658200 -0.008860 5.284 1.3970 0.2370 49.54 54 22222111111 3.0 13.31840 13.31210 27.96700 27.97160 2.658500 -0.001010 5.301 1.3074 0.2430 46.80 86 22222111111

For stations 18-19, which did not have a fluorometer, altimeter, or turbidity sensor:

Final Conductivity and Temperature Station:19 Khormov Latitude: 69.0272 Longitude: -167.9062 Date: 081404 Pres T90(1) T90(2) Sal(1) Sal(2) OxCur docdt OXYG nscans wocecode 1.0 8.92370 8.92280 31.04170 30.73750 3.241300 -0.019010 6.376 55 22222111 2.0 8.92430 8.92350 31.07170 31.03810 2.998700 -0.062820 5.815 31 22222111 3.0 8.92380 8.92320 31.06950 31.05100 2.775600 -0.072760 5.300 49 27272111 4.0 8.92363 8.92220 31.06730 31.05360 2.648800 -0.050400 5.011 61 27272111 5.0 8.92347 8.92230 31.06510 31.05480 2.785500 0.037630 5.324 27222111 71

Note: Quality Code 7 was inserted in the wocecode column associated with the variable that was interpolated.

Since the upcast (.cup) was not quality-controlled to the extent that the downcast was, these data remained in the 1-decibar-averaged Seabird format. A sample follows:

```
* Sea-Bird SBE 9 Data File:
* FileName = D:\Data\CTD\KH 006.dat
* Software Version Seasave Win32 V 5.31a
* Temperature SN = 2271
* Conductivity SN = 1860
* Number of Bytes Per Scan = 37
* Number of Voltage Words = 4
* Number of Scans Averaged by the Deck Unit = 1
* System UpLoad Time = Aug 10 2004 15:24:02
* NMEA Latitude = 65 40.37 N
* NMEA Longitude = 168 17.74 W
* NMEA UTC (Time) = Aug 10 2004 15:23:44
* Store Lat/Lon Data = Append to Every Scan and Append to .NAV File When <Ctrl F7> is Pressed
** Ship: Khromov
** Cruise: Rusalca Leg 2
\# nguan = 18
\# nvalues = 44
# units = specified
# name 0 = prDM: Pressure, Digiquartz [db]
```

name 1 = t090C: Temperature [ITS-90, deg C] # name 2 = t190C: Temperature, 2 [ITS-90, deg C] # name 3 = c0mS/cm: Conductivity [mS/cm] # name 4 = c1mS/cm: Conductivity, 2 [mS/cm] # name 5 = sbeox0V: Oxygen Voltage, SBE 43 # name 6 = sbeox0dOC/dT: Oxygen, SBE 43 [doc/dt] # name 7 = flECO-AFL: Fluorescence, Wetlab ECO-AFL/FL [mg/m^3] # name 8 = oxsatML/L: Oxygen Saturation [ml/l] # name 9 = depSM: Depth [salt water, m] # name 10 = altM: Altimeter [m] # name 11 = seaTurbMtr: OBS, Seapoint Turbidity [FTU] # name 12 = scan: Scan Count# name 13 = sbeox0ML/L: Oxygen, SBE 43 [ml/l], WS = 2 # name 14 = nbin: number of scans per bin # name 15 = sal00: Salinity [PSU] # name 16 = sal11: Salinity, 2 [PSU] # name 17 =flag: flag $\begin{array}{l} \# \ {\rm span} \ 0 = & 1.000, & 44.000 \\ \# \ {\rm span} \ 1 = & 10.5155, & 13.7871 \\ \# \ {\rm span} \ 2 = & 10.5135, & 13.7882 \end{array}$ # span 3 = 33.528124, 34.325735 # span 4 = 33.526975, 34.329369 # span 5 = 2.6961, 3.0539 # span 6 = -0.00519, 0.01022 # span 7 = 0.6845, 1.6241 # span 8 = 6.10857, 6.42315 # span 9 = 0.983, 43.570 # span 10 = 3.45, 46.58 # span 11 = 0.157, 0.238 # span 12 = 20239. 39563 # span 13 = 5.37291, 6.51908 # span 14 = 27, 109 # span 15 = 27.4387, 30.6136 # span 16 = 27.4368, 30.6176 # span 17 = 0.0000e+00, 0.0000e+00 # interval = decibars: 1 # start_time = Aug 10 2004 15:24:02 # bad flag = -9.990e-29 # sensor 0 = Frequency 0 temperature, primary, 2271, 06/17/2004 # sensor 1 = Frequency 1 conductivity, primary, 1860, 06/11/2004, cpcor = -9.5700e-08 # sensor 2 = Frequency 2 pressure, 75639, 12/21/2002# sensor 3 = Frequency 3 temperature, secondary, 2534, 06/11/2004 # sensor 4 = Frequency 4 conductivity, secondary, 2710, 06/11/2004, cpcor = -9.5700e-08 # sensor 5 = Extrnl Volt 0 userpoly 0, ISUS017_N2 # sensor 6 = Extrnl Volt 1 userpoly 1 # sensor 7 = Extrnl Volt 2 altimeter # sensor 8 = Extrnl Volt 3 seapoint turbidity meter, 1648 # sensor 9 = Extrnl Volt 5 WET Labs, ECO_AFL # sensor 10 = Extrnl Volt 6 Oxygen, SBE, primary, 263, 07/01/2004 # datcnv_date = Apr 06 2005 13:53:42, 5.31a # datcnv_in = c:\cruise\kh_proc\kh_006.dat c:\cruise\kh_proc\kh_006.con # datcnv_skipover = 15500 # alignctd_date = Apr 06 2005 13:53:46, 5.31a # alignetd_in = c:\cruise\kh_proc\kh_006.cnv # alignctd_adv = c1mS/cm 0.073, sbeox0V 2.000 # wildedit_date = Apr 06 2005 13:53:52, 5.31a # wildedit_in = c:\cruise\kh_proc\kh_006.cnv # wildedit_pass1_nstd = 2.0 # wildedit_pass2_nstd = 20.0 # wildedit_pass2_mindelta = 0.000e+000 # wildedit_npoint = 100

```
# wildedit_vars = prDM t090C t190C c0mS/cm c1mS/cm sbeox0V sbeox0dOC/dT flECO-AFL oxsatML/L depSM
altM seaTurbM
# wildedit excl bad scans = yes
# celltm_date = Apr 06 2005 13:53:58, 5.31a
# celltm_in = c:\cruise\kh_proc\kh_006.cnv
# celltm_alpha = 0.0300, 0.0300
# celltm_tau = 7.0000, 7.0000
# celltm_temp_sensor_use_for_cond = primary, secondary
# filter_date = Apr 06 2005 13:54:03, 5.31a
# filter_in = c:\cruise\kh_proc\kh_006.cnv
# filter_low_pass_tc_A = 0.030
# filter_low_pass_tc_B = 0.150
# filter_low_pass_A_vars = c0mS/cm c1mS/cm flECO-AFL altM seaTurbMtr
# filter_low_pass_B_vars = prDM
# loopedit_date = Apr 06 2005 13:54:13, 5.31a
# loopedit_in = c:\cruise\kh_proc\kh_006.cnv
# loopedit_minVelocity = 0.100
# loopedit_excl_bad_scans = yes
# Derive_date = Apr 06 2005 13:54:21, 5.31a
# Derive_in = c:\cruise\kh_proc\kh_006.cnv c:\cruise\kh_proc\kh_006.con
# derive_time_window_docdt = seconds: 2
# binavg_date = Apr 06 2005 13:54:27, 5.31a
# binavg_in = c:\cruise\kh_proc\kh_006.cnv
# binavg_bintype = decibars
\# binavg_binsize = 1
# binavg_excl_bad_scans = yes
# binavg_skipover = 0
\# binavg_surface_bin = no, min = 0.000, max = 0.000, value = 0.000
# Derive date = Apr 06 2005 13:54:32, 5.31a
# Derive_in = c:\cruise\kh_proc\kh_006.cnv c:\cruise\kh_proc\kh_006.con
# split_date = Apr 06 2005 13:54:32, 5.31a
# split_in = c:\cruise\kh_proc\kh_006.cnv
# split_excl_bad_scans = yes
# file_type = ascii
*END*
  44.000 10.5322 10.5344 34.224431 34.228062 3.0493 -9.990e-29 0.7933 6.42121 43.570
  43.000 10.5264 10.5264 34.222754 34.225631 3.0507 7.4793e-11 0.8079 6.42189
                                                                                          42.567
  42.000 10.5155 10.5135 34.219808 34.222094 3.0539 -9.990e-29 0.7896 6.42315 41.583
  41.000 10.5374 10.5376 34.225775 34.228963 3.0529 0.00122 0.7885 6.42056
                                                                                          40.586
```

•