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Entrainment and Homogenization of a Passive Tracer in a Numerical Model 
Gyre 

ROBERT S. PICKART 1 

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 

The mechanism by which tracer is entrained into a spatially decaying gyre from an external source is 
examined, as well as the homogenization which subsequently occurs. A simple advective-diffusive nu- 
merical model is used whose streamlines consist of an elongated gyre situated beside a distinct boundary 
current, which inputs tracer into the domain. This is meant to represent the deep cyclonic recirculation of 
the Gulf Stream and adjacent deep western boundary current. A shear flow analysis shows that two 
parameters dictate the manner in which tracer penetrates across streamlines of the gyre: a peclet number 
and a parameter which measures the strength of the cross-stream shear. The large values of these 
parameters cause a plume of tracer to spiral inward toward the center of the gyre. At steady state the 
tracer which has accumulated in the gyre becomes homogenized. The size of this uniform area is related 
to the extent to which the spiral penetrated the gyre and decreases with increasing diffusivity, as several 
examples illustrate. 

1. INTRODUCTION 

It is characteristic of closed streamline flow that properties 
in the interior become homogenized. This was shown ex- 
plicitly by Rhines and Young [1982a], as applied to potential 
vorticity Q, provided the mixing due to eddies is weak. (Hom- 
ogenization has been known to occur in the presence of strong 
mixing as well; see, for instance, Cox [1985].) The homogen- 
ization of Q is crucially tied to the structure of planetary scale 
circulation, as outlined by Rhines and Young [1982b] in their 
theory of wind-driven circulation. Regions of weak Q gradi- 
ents are found persistently in eddy-resolving numerical models 
and have also been observed in data from the north Atlantic 

[McDowell et al., 1982]. 
The main stream function and potential vorticity for the 

deep layer of a basin-wide quasi-geostrophic numerical model 
are shown in Figure 1 [from Holland and Rhines, 1980]. The 
area of uniform Q coincides with the region of most intense 
flow, thus showing the significance of the lateral extent of 
homogenization. In addition, the level of the homogenized 
plateau is related to the strength of the circulation. Cessi et al. 
[1987] examined the relationship between lateral extent and 
magnitude of homogenization and associated gyre circulation, 
and presented a way of calculating these quantities for the 
simplified case of a barotropic flow. 

The smoothing of properties within closed streamlines re- 
veals itself in another context as well: that of passive tracers. 
The simplified nature of passive tracers suggests that hom- 
ogenization be examined in this framework, with the hope 
that insights revealed may be applied to the more complicated 
case of a dynamically active quantity. Musgrave [1985] con- 
ducted a numerical study of homogenization in a subtropical 
gyre, modeling the subduction of tracer from the sea surface. 
He examined both the aforementioned characteristics as a 

function of peclet number (which measures the relative 
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strength of eddy mixing versus large-scale advection). The 
steady state distribution from one of the model simulations 
appears in Figure 2. 

The direct ventilation mechanism that Musgrave modeled is 
not present in the deep ocean, whose density surfaces do not 
outcrop. Recently however, Hogg et al. [1986] discussed a 
case in which the properties of a deep recirculating flow are 
replenished in a straightforward manner. They outlined how 
the cyclonic recirculation of the deep Gulf Stream should pass 
close enough to the deep western boundary current (DWBC), 
west of the Grand Banks, to entrain relatively young, anoma- 
lous water diffusing from the DWBC. To investigate this pro- 
cess, they invoked a simple advective-diffusive numerical 
model; the streamlines of the model and situation which it 

proposes to represent are shown in Figure 3. The deep north- 
ern recirculation of the Gulf Stream has been studied exten- 

sively in recent years and is believed to transport roughly 20 
sverdrups, deeper than 4000 m, between the Grand Banks and 
the New England seamounts. The reader is referred to Hogg 
[1983], Hogg and Stommel [1985], and Hogg et al. [1986] for 
both observational and theoretical discussions. 

The advective-diffusive model of Hogg et al. [1986] was 
used to interpret hydrographic data collected in the region. 
The model circulation is highly idealized, and numerous po- 
tentially important aspects are omitted for simplicity, includ- 
ing multiple water mass sources. In addition, to parameterize 
the effect of eddies using a constant diffusivity represents an 
extreme simplification. There is evidence that the diffusivity in 
the western north Atlantic is a function of both lateral posi- 
tion and depth (J. Price, personal communication, 1986). The 
effects of different features such as these need to be examined 

in future investigations. 
The results of the numerical model can also be reviewed 

independently, without direct comparison to the western 
north Atlantic, to study ideas pertaining to homogenization, 
which is the focus of this study. The flow field and boundary 
conditions of the model make this a particularly interesting 
case to investigate. In contrast to Musgrave's [1985] model 
gyre, which is strongest at the outer edge, the gyre of Figure 3 
decays at the edge, causing significant differences in en- 
trainment of tracer by the gyre. In addition, the boundary 
conditions here are open (except for a small region of input) 



6762 PICKART: HOMOGENIZATION OF PASSIVE TRACERS 

Fig. 1. Mean distribution (a) stream function and (b) potential 
vorticity, for the deep layer of a wind-driven eddy-resolving numerical 
model [from Holland and Rhines, 1980]. 

which allows the gyre itself to naturally determine the area 
which becomes homogenized. Thus it is not straightforward to 
predict the lateral extent of homogenization as a function of 
the model parameters. Similarly, it is not obvious what the 
final level of tracer will be in the gyre. 

As part of their analysis, Cessi et al. [1987] derived a formu- 
la for diagnostically calculating the level of homogenization at 
steady state. This relation must hold in the present case, but it 
cannot tell us beforehand what the level will be, as there is 
limited boundary influence directly adjacent to the gyre. In the 
formulation used by Cessi et al. [1987] the strength of the 
mixing due to eddies is parameterized by the boundary con- 
ditions. In Mustdrave's [1985] simulation the gyre has a solid 
boundary. Such dependence of homogenization on boundary 
forcing is not present in this model. 

The present study addresses the entrainment of tracer and 
how this is intimately tied to the occurrence of homogen- 
ization at steady state. Only the lateral extent of homogen- 
ization is considered, for any examination of the gyre level 
must include both the boundary current and gyre of Figure 3. 
Instead, we isolate the gyre circulation so as to keep the analy- 
sis more general. 

First, the model is described and the manner of entrainment 

is isolated in the context of a simpler unidirectional flow. It is 
shown that the penetration of tracer across streamlines (which 
occurs as a plume extending from the boundary) can be 
characterized according to two parameters, which depend on 
the strength of the flow and the strength of its cross-stream 
shear, respectively. Results from this analysis are then applied 
to the full gyre circulation to explain an asymmetry in the 
plume of tracer as it penetrates the gyre interior. 

Finally, the homogenization which occurs at steady state is 
described. The relationship between the size of the homogen- 
ized region and the plume of incoming tracer is examined, as 
well as the effect of varying the diffusivity. 

2. THE ADVECTIVE-DIFFUSIVE MODEL 

The evolution in time and space of a passive tracer is de- 
scribed by the advective-diffusive equation, considered here in 
its two-dimensional form 

O, + u. VO = V.•cV0 (1) 

where O(x,y) is the tracer concentration, •c is the eddy diffusi- 
vity (constant), u(x,y) is the horizontal velocity vector, and 
V = i(8/&c) + j(8/Sy). 

The flow field of Figure 3 is sufficiently complex that the 
solution for 0 is obtained by a numerical integration. Specifi- 
cally, (1) is finite-differenced forward in time, with upstream 
differencing for the advection and centered differencing for the 
diffusion. To counteract the implicit diffusion which accom- 
panies upstream advection, at each time step a corrective mea- 
sure was implemented, following the procedure of Smolarkie- 
wicz [1983]. The test which Smolarkiewicz used on an isolated 

distribution of tracer was successfully applied here to check 
the scheme. 

The model boundary conditions consist of three types. At 
the upstream edge of the southward flowing boundary current 
the concentration of tracer is specified as a gaussian distri- 
bution. At the downstream edge, tracer is allowed to advect 
out of the domain (at which location alongstream diffusion is 
omitted, which is a reasonable approximation in light of the 
strong current). Everywhere else along the boundary, veloci- 
ties are negligibly small and thus were set identically equal to 
zero. In these regions an open boundary condition is em- 
ployed, which allows tracer to diffuse out of the domain as if 
there were no boundary present. The method is based on an 
interior extrapolation at each time step and is described in the 
appendix. 

Initially, there is no tracer within the domain. The diffusi- 
vity is set equal to tc -- 106 cm2/s (the circulation is steady). As 
time progresses, tracer is advected downstream and fills the 
boundary current, while slowly diffusing offshore. A plume 
develops as the eastward flow of the gyre pulls tracer away 
from the boundary. The plume then wraps around the gyre as 
tracer begins accumulating within it (Figure 4). Spin up con- 
tinues in this manner until at steady state a homogenized 
region forms in the center portion of the gyre. 

3. ENTRAINMENT 

Close inspection of Figure 4 shows that as the plume of 
tracer winds around the gyre, it migrates across streamlines 
toward the gyre center. The reason for this spiral is that the 

^ B 

Fig. 2. (a) Isolines of a passive tracer 0 at steady state for the 
circulation shown in (b), for the case of a large Peclet number [from 
Must2rave, 1985]. 
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Fig. 3. (a) Schematic representation of the deep cyclonic Gulf Stream recirculation and DWBC. The gyre streamline is 
a deep-layer thickness isopach [from Hogg and Storereel, 1985], and the boundary current streamline is deduced from 
water sample data [see Pickart, 1987]. (b) The streamlines of the numerical model, meant to represent the circulation in 
Figure 3a. The domain is 2000 x 1000 km with a grid spacing of 25 km. 

portion of the plume which spreads inward encounters a 
region of stronger velocity and advects around more quickly. 
Note also that the spiral is asymmetric in that where the flow 
is zonal the spiral is not as pronounced as in the meridional 
flow. To understand why this asymmetry exists, it must be 
understood what factors govern the spiral. To do this, a prob- 

lem involving diffusion in a simple shear flow is considered. 
The effect that velocity shear has on the spreading of a 

passive tracer has been studied considerably, particularly the 
process of shear dispersion whereby cross-stream shear en- 
hances the spreading of tracer along streamlines [Rhines, 
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Fig. 3. (continued) 

Fig. 4. Plume of tracer spiralling into gyre (snap shot during spin 
up). The dark lines are the bounding streamlines of the gyre and 
boundary current. 
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Fig. 5. Depiction of a plume of tracer in a linear shear flow. Length 
scales of the plume are as shown; tracer is input at u = U o. 

1983]. Here we address a different aspect in which cross- 
stream shear influences the diffusion of tracer. 

For a given distribution of tracer consider the parameter 
which is the ratio of the alongstream gradient to the cross- 
stream gradient, Ox/Oy = 6 L. The value of 6L is one measure of 
the extent to which shear dispersion occurs. For the same 
shear and diffusivity a large 6• means prevalent shear disper- 
sion, whereas a small 6• means this effect is negligible. Shear 
dispersion acts on a distribution of tracer to reduce its 6• 
[Rhines, 1983]. 

Here we are interested in the effect that cross-stream shear 

has on the spreading of tracer across streamlines, when the 
distribution of tracer is characterized by a small 6•, i.e., a 
tracer plume. The analysis applies to situations in which there 
is a localized source of tracer. Such a distribution in a linear 

shear flow is analogous to the plume of tracer penetrating the 
edge of the gyre. 

3.1. Linear Shear Flow 

Consider the advective-diffusive problem schematically il- 
lustrated in Figure 5, which is designed to isolate the mecha- 
nism by which tracer enters the gyre in the model. At t = 0 a 
step function source is turned on, and tracer progresses down- 
stream while spreading laterally. The center of mass of the 
tongue proceeds to migrate across streamlines as with the gyre 
flow. It is relevant to define four length scales for this prob- 
lem: 

L,, the cross-stream penetration of tracer. At each location 
alongstream the cross-stream extent of the plume is defined as 
the distance to a given percent concentration (say the e-folding 
concentration) of the local plume amplitude at that location. 
Lp is the maximum such penetration. 

L a, the alongstream length of the tongue, which is defined as 
the zonal distance to where the meridional penetration is 
greatest. 

L ..... the displacement of the center of mass of the tongue 
across streamlines at the point where the meridional penetra- 
tion is greatest. This measures migration of the tongue. (Note 
that migration requires cross-stream shear.) 

L s - Lp -- Lcm; this measures spreading of the tongue. 
The quantities La and Lp are the x and y length scales of the 

tracer distribution; Lcm and L• are the first and second y mo- 
ments (Figure 5). For a northward diffusing particle of tracer, 
consider the balance between advection and diffusion where 

u= U o + :zy(v=O), 

(Uo + •y)Ox = •cOxx + tcOyy (2) 

where U o - (constant) reference velocity, and cz = cross- 
stream shear. 

We estimate the order of magnitude of each term in (2) 
using the x and y Icngth scales and detine the following nondi- 

mensional parameters: the aspect ratio 6 = Lv/L,; the along- 
stream Peclet number P,=(U 0 + •LflL,/•c, which is the 
alongstream diffusive time scale divided by the advective time 
scale; and the cross-stream Peclet number Pc = Pa 62, which is 
the cross-stream diffusive time scale divided by the advective 
time scale. 

In terms of these parameters the balance in (2) becomes 

pa62• 62 q- 1 (3) 

3.1.1. Large alongstream Peclet number: Relationships be- 
tween length scales. Consider first the limit of small diffusi- 
vity and small aspect ratio (6 << 1), where Pa >> 1 but Pc re- 
mains O(1). The dominant balance in (3) is 

Pa62,,- 1 (4) 

Note that the alongstream Peclet number Pa is composed of 
two parts, which can be thought of as two separate along- 
stream Peclet numbers: one for the shear part of the flow and 
one for the uniform part (the reference velocity). We define the 
parameter $ as the ratio of these two Peclet numbers, which is 
a measure of the shear that the tracer experiences, $-- 

yLv/U o. With this, (4) can be rewritten 

i+S•• 
LaUo 62 

In the limit S << 1 the shear is negligible and L v obeys the 
rule 

•.• (KLa• 1/2 

In the opposite limit, S >> 1, the shear is so strong that the 
reference velocity is negligible. Here L v obeys the rule 

L v • (6) 

When $ ,-, 1, the shear and the reference velocity are com- 

parable, and Lv ,,- Uo/•. 
Three different examples of distributions in which P, >> 1, 

Pc '" 1 appear in Figure 6. (The solutions were obtained nu- 
merically using the scheme described above, with appropriate 
boundary conditions.) Each example represents a snapshot as 
the tongue of tracer evolves. In the first ($ << 1) 

S = 0.1 L v • L• >> Lcm 

In the second (S >> 1) 

S= 2.3 

In the third 

Lp • Lcm >> L s 

S = 0.6 L v > Lcm • L s 

(A complete listing of parameters appears in Table 1.) As the 
plume in the first example progresses downstream, L v follows 
the $ << 1 law, and in the second example it follows the $ >> 1 
law (Figures 7a and 7b). In the former, where the shear is 
negligible, one would expect the tongue to spread in the same 
way as the envelope traced out by a spot of dye progressing 
downstream from the origin. The width of such a dye spot 
increases with downstream distance as 2(rex/u) •/2, which agrees 
with (5) and gives the slope of 1/2 obtained from Figure 7a. In 
the third example, L v corresponds to neither of these laws; its 
slope is between the values of 1/2 and 1/3 (Figure 7c). 

When the shear is negligible, spreading of the tongue ac- 
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Fig. 6. Snap shot of tracer in which P,>>I, Pc•'l-(a) S=0.1, 
which corresponds to spreading, (b) S--2.3, which corresponds to 
migration, (c) S = 0.6, which is between the limits of spreading and 
migration. 

counts for most of the penetration of tracer across streamlines. 
In a strongly sheared flow, however, the penetration is mostly 
due to migration of the tongue. In the third example, which is 
between these extremes, spreading and migration are both 
substantial; however, with increasing penetration the shear 
extreme is approached, and correspondingly, Lcm becomes 
more closely correlated with L v. Note that this example does 
not correspond exactly to the S • 1 case discussed above, 
which implies that when U o and •y are of equal magnitude, 
spreading and migration will not contribute equally to the 
penetration but rather migration will be somewhat more 
prevalent. 

TABLE 1. Parameters for the Different Examples of the Linear 
Shear Problem 

a, cm/s/ Uo, L v, 
Figure S P. (km x 100) cm/s km x 100 

6a 0.1 7.7 0.5 5.0 1.4 
6b 2.3 7.6 4.0 2.0 1.2 
6c 0.6 7.5 1.5 3.5 1.4 
8a 1.1 10.4 2.0 3.0 1.6 
8b 1.2 0.2 0.3 0.5 2.0 
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Fig. 7. Relationship between the x and y length scales of the 

plumes in Figure 6 at four successive times. A slope equal to one half 
is consistent with (5); a slope equal to one-third is consistent with (6). 
(a) For the plume of Figure 6a, (b) For the plume of Figure 6b, (c) For 
the plume of Figure 6c. 

These results can be obtained analytically as well through 
an analysis of a slightly different (simpler) problem: that of a 
point drop of dye in a linear shear flow. Smith [1982] solved 
this case, and while the dye drop is not a continuous source 
but rather an initial distribution that evolves, the same infor- 
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Fig. 8. (a) Snap shot of tracer in which Pa >> 1, Pc •' 1 with a value of S such that migration is more prevalent than 
spreading. (b) Pa << 1, Pc << 1 in which spreading is more prevalent than migration for a comparable value of S. 

mation regarding penetration can be derived [see Pickart, 
1987]. Because of its similarity to the gyre problem however 
the continuous source problem was examined here. 

3.1.2. Small alongstream Peclet number: Enhancement of 
Spreading. In the first set of examples (Figure 6) it is seen 
that for S >> 1, migration of the plume, i.e., movement of its 
center of mass is more prevalent than spreading, and for S << 1 
the opposite is true. In each of these cases, P• >> 1. With a 
smaller P• the system becomes less sensitive to the velocity 
and, more importantly, to changes in the velocity. Thus we 
might expect that a smaller P,, will diminish the importance of 
migration versus spreading, as is the case with a small S. The 
distinction between S << 1 and P• << 1 should remain clear, 
however: In the first instance the cross-stream change in ve- 
locity is unimportant because it is small, and in the second 
instance it is unimportant because the system does not detect 
it. 

A second set of examples appears in Figure 8. In Figure 8a, 
P• .-- 10, and in Figure 8b, P• • 0.1 (S is comparable in each; 
see Table 1). Indeed, with a large alongstream Peclet number, 
Lc, , > L•, whereas with a small alongstream Peclet number, 
L• > Lc, ,. Note, however, that in Figure 8b, Lp • L•, so that 
the balance of terms in (4) is not applicable here, i.e., the 
aspect ratio is now O(1) and the alongstream diffusive term 
must be retained. In this case, both the alongstream and cross- 
stream Peclet numbers are small, whereas previously P• >> 1 
and Pc "• 1. The dominant balance in (3) for this example is 
-t52-• 1. 

3.1.3. Cross-stream penetration. It is seen that variation 
in the alongstream Peclet number P• alters the importance of 
alongstream diffusion versus advection in balancing the cross- 
stream diffusion. Variation in the shear parameter S enhances 
or diminishes advection by a constant velocity versus a 
sheared velocity. This means that two criteria must be satisfied 
in order to obtain migration of the tracer plume. First, P• 
must be large enough so that the system is sensitive to the 
velocity field (this condition is necessary but not sufficient). In 
addition, S must be large enough that the cross-stream shear 
is significant. 

As an alternative to L•, as a measure of cross-stream pene- 
tration, consider the integral of tracer in the region y > 0, 
x < L•, i.e., the total amount of tracer that has penetrated 

northward. Here lies a further distinction between S >> 1 and 

S << 1. For two plumes, one in a strongly sheared flow and one 

in a uniform flow, in which L• and L•, are the same there is 
significantly less tracer north of y = 0 in the sheared flow. This 
is because the northward shear increases the northward gradi- 
ent of tracer, and this causes a southward flux of tracer across 

part of the 3'= 0 line. Thus although tracer has penetrated 
just as far across-stream in the sheared flow, there is less of it. 

Although the P, << 1 limit resembles that of P• >> 1, S << 1 in 
that spreading of the plume is more prevalent than migration, 
these instances represent opposite extremes in penetration. 
For a specified flow field (U o and =) and a given L• the value 
of Lp depends on •c. A sufficiently small tc means that L v is too 
small for the plume to sense the shear, and large P, spreading 
occurs. For larger tc (and L•,) the S >> 1 limit is approached 
and migration becomes important. Small P, spreading occurs 
with even larger •c, and this represents the upper extreme of 
penetration. 

3.2. Application to Gyre Flow 

We return now to the gyre problem. The process by which 
the plume of tracer penetrates the edge of the gyre and diffuses 
into a region of stronger flow resembles the shear flow prob- 
lem analyzed above, and some of the ideas previously devel- 
oped are applied now to this problem. There are differences, 
however, between the two problems. Here the cross-stream 
shear y varies both alongstream and across-stream, along- 
stream shear is present as well, the flow is curved rather than 
rectilinear, and the input of tracer to the gyre is not a step 
function in time. 

Figure 9 shows a time history of tracer penetrating the gyre. 
The advancement of the plume in each one-year segment can 
be thought of as a separate example of the shear flow problem 
examined above, with the following definitions: L a, the dis- 
tance that the leading edge of the plume travels alongstream 
in a year, L,.,,. movement of the center of mass of the leading 
edge of the plume across-stream in a year, •, cross-stream 
shear halfway between the source and the leading edge of the 
plume (the alongstream shear is negligible with respect to y), 
and U o, velocity at the source. 

These quantities are analogous to those similarly named in 
the previous shear flow problem. The gaussian at the up- 
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stream edge of the boundary current is a step function applied 
at t - 0, but by the time tracer reaches the gyre it is no longer 
characterized by a sharp front, i.e., the source for each of the 
above examples grows in amplitude and width. This means we 
are unable to define the analog to L,, which in turn means we 
are unable to measure directly the values P, and S. We can, 
however, estimate the size of P, by noting that c5, the aspect 
ratio, is much less than one for each one-year segment (Figure 
9), and this implies that P• >> 1. The first condition for migra- 
tion is thus satisfied everywhere around the gyre. 

Because a spiral does occur, it is natural to assume that the 
second condition for migration, S >> 1, is satisfied as well. 

Recall that in this limit, L,-,• Lcr ,. Since we can measure Lcr ,, 
we are then able to check this assertion. For each single-year 
segment we substitute the values of y, L•, and K into (6), where 
Lp is replaced by Lcm (the proportionality constant for (6) was 
determined numerically). This predicted value of Lcr , is in turn 
compared to the measured value. The results of this compari- 
son {Figure 10) show that there is good agreement between the 
predicted and measured values where the flow is meridional. 
However, while the predicted curve does show smaller pene- 
tration in the zonal flow, it is still significantly more than what 
actually occurs, suggesting that the migration limit does not 
apply in the zonal flow. 

Figure 11 graphs the values of U o and • which the plume 
experience as it travels around the gyre. Also shown is the 
extent of the corresponding spiral. The fact that both • and 
U 0 are larger in the zonal flow, together with the small extent 
of migration there, suggests that this corresponds to the ad- 
vective limit. In particular, in these regions not only is P• >> 1, 
but Pc >> 1 as well so that isolines of tracer nearly coincide 
with streamlines. It is more accurate then to think of the 

plume as mirroring streamlines when it travels in the stronger 
zonal flow, while spiraling across streamlines in the manner of 
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Fig. 9. Time sequence of tracer diffusing from the boundary cur- 
rent and becoming entrained into the gyre. The dark lines are the 
bounding streamlines. 

06 - 

Zonal Meridional 

predicted 
.... measured 

/ \ 
/ \ 

/ \ 
/ \ 

/ \ 
/ \ 

/ \ 
---- .... / \ 

I I I I I 
2 3 4 5 6 

Time (yr) 

Zonal 

Fig. 10. Comparison of Lcm as measured from successive distri- 
butions of Figure 9, versus the value predicted from (6). The plume's 
direction of travel is indicated above. 

the above shear flow problem when it travels in the weaker 
meridional flow. 

4. HOMOGENIZATION 

As the gyre simulation progresses to steady state, the tracer 
in the center part of the gyre becomes uniformly distributed. 
This occurrence of homogenization is related to the penetra- 
tion process described above. Before proceeding with a dis- 
cussion of this problem we first review the argument for hom- 
ogenization following Rhines and Young [1982a]. 

4.1. Review of Homogenization 

Consider the steady state balance of advection and diffusion 
in a gyre, governed by the steady form of (1), 

u. V0 = V. KV0 

Integrating over the area bounded by a streamline and apply- 
ing the divergence theorem gives, 

• uO. nds = • tcVO. nds (7) 
where S is the bounding streamline and n is the unit normal to 
the streamline. Note that the left-hand side of (7) is identically 
zero because u and n are perpendicular. 

In the limit of strong advection/weak diffusion, isolines of 
tracer nearly coincide with streamlines, i.e., 0 = 0(½). This 
gives 

vo = 0(½),v½ 

and since the integral is around a streamline, 

0(½),f• rove. nds= 0 
The quantity inside the integral is positive definite, which fur- 
ther implies that 

0(½), = 0 0 = const 

Homogenization is thus obtained in a strongly advective 
system. 
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Fig. 11. (a) The value of the reference velocity for the distri- 
butions of Figure 9. (b) The value of the cross-stream shear. (c) The 
cumulative migration of the plume. 

4.2. Spatially Decaying Gyre 

The flow field that Musgrave [1985] used in his numerical 
study of homogenization consisted of Stommel-type gyre, in 
which the strongest flow occurs at the edge of the gyre. He 
defined a Peclet number, P = UL/•c, using the length scale of 

-10 I 
o 

I I I 

I 
5 10 15 20 

Northward Distance (km X 100) 

Fig. 12. North-south velocity section through the center of the gyre 
of Figure 3b. 

the basin (L) and the characteristic velocity of the gyre (U) and 
discussed the extent of the homogeneous pool versus P. In 
terms of (1) the Peclet number determines to what extent ad- 
vection balances diffusion and L should be defined in terms of 

the tracer distribution. It is unclear how to discuss results in 

terms of a Peclet number so defined, especially with regard to 
homogenization when locally the length scale becomes infinite. 
Here we define P in terms of the plume of tracer which pen- 
etrates the gyre, as was done in the previous section. 

The gyre presently being considered has its maximum veloc- 
ity relatively close to the center, decaying from this point to 
the edge (Figure 12). For simplicity, for the time being we 
consider an axisymmetric, i.e., circular gyre. We divide the 
gyre into two regions: the edge where the flow is weak and the 
inner part where the flow is more intense (close to the gyre 
center the flow once again becomes weak). 

As the plume of tracer enters the outer, weaker part of the 
flow, it spirals across streamlines (provided the shear is strong 
enough) in the manner discussed above. This region is 
characterized by Pa >> 1, Pc "• 1. Eventually, the plume reaches 

2 3 4 5 

Skewness n 

Fig. 13. The value of the homogenization function amplitude 
versus the skewness of a gyre. The skewness n is defined as the ratio of 
the major axis of the ellipse to the minor axis. The area of the gy• is 
the same in each case and set equal to 
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Fig. 14. (a) Steady state distribution of tracer for •c ~ 10 6 cm2/s. The shaded region corresponds to the area of the gyre 
in which the gradient of tracer is < 0.1 concentration units/(km x 100). This is taken as the criterion for homogenization. 
(b) The region of homogenization in Figure 14a shown in relation to the inward spiral of the plume of tracer during spin 
up. The solid lines are bounding streamlines. (c) Steady state distribution for •c ,-, 5 x 10 6 cm2/s. (d) Homogenized region 
and spiral for •: ,-, 5 x 10 6 cm:/s. 

strong enough flow (we clarify below what is meant by strong 
enough) that it is nearly pulled around a streamline. At this 
point the spiral has "collapsed" to a streamline, and here 
Pa >> 1,Pc >> 1. AS discussed above, these latter conditions de- 
scribe the advective limit, which is the necessary condition for 
homogenization. Specifically then, the outer region of the gyre 
is where the spiral occurs, and the inner region, delimited by 
the collapsed spiral, is where homogenization occurs. 

For the nonaxisymmetric gyre we saw above that as the 
plume first enters the gyre progressing eastward, the fast flow 
keeps it nearly confined to a streamline. However, when the 
plume turns northward, the flow along that same streamline 
weakens and the plume proceeds to spiral significantly inward. 
In this case, the division between the two regions of the gyre is 

not as clear cut. However, homogenization will not occur until 
the plume tracks a streamline around an entire circuit. Thus 
even though portions of the spiral may collapse, it is only 
where the cumulative spiral collapses that the transition 
occurs between the two regions. 

We now examine more closely the condition that the flow 
be strong enough to keep the plume from diffusing apprecia- 
bly across-stream in the time it takes to recirculate. The ad- 
vective limit is given by Pa >> 1 and Pc >> 1. The more strin- 
gent of these is Pc >> 1, which, by definition, implies that 

Pc k,•,/k,-•--,/ 1 
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Fig. 15. Steady state distribution for •c • 10 7 cm2/s. 

For a circuit around the gyre the relevant length scale is L, = 
Ls, the perimeter of the streamline, and the relevant velocity 
scale is U = e s, the average velocity around the streamline. We 
define the homogenization function H as the ratio of these two 
quantities, which gives 

where H(½)= i•s(½)/Ls(½). The function H, which is the inverse 
of the circulation time, can be thought of as a measure of the 
tendency for homogenization to occur based only on flow 
characteristics. A larger H means greater likelihood for hom- 
ogenization. 

Consider again the axisymmetric gyre, whose streamfunc- 
tion is given by 

½=½o 1-e• (8) 
where ½o is the amplitude, and L is the e-folding length scale 
of the gyre. In this case, e s - v s. From (8), 

c•lp 2 
v•- 3r -L g½ø-- 

The perimeter L• = 2•r, which gives 

1 

H(½) = •L • (½o -- ½) 

This says that the greatest tendency for homogenization is at 
the gyre center, decreasing linearly with increasing ½. Thus the 
innermost part of the gyre, where the flow becomes weak 
again, is included in the advective region because the circu- 
lation time is small (the perimeter of a streamline is small). 
Contrast this to solid body rotation, ½ = ½o r2, where the 
circulation time is constant for each streamline. Here v• = 
2½or and H(½) = ½o/•; thus the tendency for homogenization 
is the same everywhere. 

In the nonaxisymmetric gyre the velocity along a streamline 
varies around the gyre. The streamfunction is 

__ X2 __ y2 

½: ½o[1- exp (L-'• •:•)] (9) 
where L x and L•, are the x and y e-folding length scales. Note 
that 

m m 
tSs • u ' ds F 
Ls Ls Ls 2 

where F is the circulation around the streamline S. From (9), 

/Lx 2 + Ly - • F:2•½ø• LxLy'2)( 1--½•o) 1n(1--•oo) 
Ls2=4rC2LxL3'ln( 1 -- •oo)-' 

which gives 

m o 
H(½) = • (½o -- ½) (10) 

where H o = (Lx2+ Ly2)/(L•Ly). Figure 13 graphs H o as a 
function of gyre skewness. It shows that for a given value of ½, 
homogenization is more likely to occur in a more skewed gyre. 
Note that this is true even though the velocity at the two 
widest sections of the gyre approaches zero as the gyre's skew- 
ness increases (the portion of the streamline in these sections 
gets vanishingly small as well). 

4.3. Limits of Dt.'ffusivity 

Homogenization within the asymmetric gyre of Figure 3 
was examined versus various values of the diffusivity •. The 
smallest value considered was t½ ,-• 10 6 cm2/s, and the homoge- 
neous pool of tracer that formed in steady state is shown in 
Figure 14a. This is the final state of the example analyzed 
above in terms of the asymmetric spiral. Figure 14b shows the 
path of the spiral and how it closes in on the region which 
eventually becomes homogenized. 

When the diffusivity is increased to • ,• 5 x 10 6 cm2/s (for 
the same gyre), this in effect causes the flow to appear weaker 
to the incoming plume of tracer. As a result, the zonal flow no 
longer corresponds to the advective limit, so a pronounced 
spiral occurs there as well as in the meridional flow, i.e., the 
asymmetry no longer exists (Figure 14d). Consistent with (10), 
the plume now has to penetrate further into the gyre before it 
encounters flow strong enough to induce homogenization. 
Correspondingly, the size of the steady state homogenous pool 
is reduced (Figure 14c). 

Upon increasing •,- further (•c-,-10 ? cm2/s), a transition 
occurs in the manner in which tracer fills the gyre. The diffusi- 
vity is so large that the meridional flow (which is weaker than 
the zonal flow) is essentially "turned off," i.e., the diffusive flux 
is now on the order of the advective flux. Thus when the 

plume of tracer turns northward in the gyre it stagnates. By 
the time tracer diffuses northward from there and gets caught 
in the zonal flow and advected westward the westward diffus- 

ing tracer from the stagnation point has penetrated the center 
of the gyre. So whereas in the previous two cases, tracer was 
advected completely around the gyre and filled the gyre center 
in a bowllike fashion, here it is advected to the east and then 

proceeds to fill the gyre from east to west. Figure 16 contrasts 
the penetration of tracer into the gyre for the various values of 
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Fig. 16. Snap shot of tracer during spin up illustrating the manner in which tracer fills the gyre. Shown above is a zonal 
section through the center of the gyre. (a) rc -• 10 6 cm2/s. (b) rc -,. 5 x 10 6 cm2/s. (c) rc -,. 10 7 cm2/s. (d) rc • 5 x 10 7 cm2/s. 

diffusivity. A small amount of homogenization does occur at 
the center of the gyre (Figure 15). 

The final case considered can be thought of as the diffusive 
limit (•: -• 5 x 10 7 cm2/s). Here the presence of the zonal flow 
is hardly felt as well, and the manner in which the gyre is filled 
undergoes yet another change. As shown in Figure 16, tracer 
diffuses from west to east across the gyre, with an undulation 
corresponding to the eastward and westward flows. 

5. SUMMARY 

The preceding analysis examined the entrainment and hom- 
ogenization of tracer in a gyre which initially was tracer-free. 
The entrainment is characterized by a plume of tracer spiral- 
ing asymmetrically inward across streamlines as a result of the 
cross-stream shear. In particular, in the zonal flow the spiral is 
minimal as the strong flow causes the plume to follow stream- 
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lines. In the meridional flow the spiral is of considerable 
extent, conforming to the ideas developed in a simpler shear 
flow analysis. 

Previous work has been done on the mixing of tracers 
within a subtropical gyre. Musgrave [1985] analyzed steady 
state numerical solutions in which the northern boundary is 
maintained at a uniform positive concentration while the 
southern boundary is kept uniformly negative. He discussed 
the presence of a spiral that extends from the boundary to the 
stagnation point of the flow at the center of the gyre. This 
spiral arises, however, because of the choice of boundary con- 
ditions (the cross-stream shear of the gyre is of the wrong 
sense to cause the type of spiral discussed here, i.e., • is every- 
where < 0). As tracer enters from the northern boundary, it 
travels anticyclonically and spreads into the interior. Upon 
encountering the negative plume that extends from the south 
the region of positive concentration shifts away from the 
boundary, hence the spiral. For the type of gyre considered 
here the inward extent of the spiral depends on the flow pa- 
rameters and diffusivity. (The maximum distance over which 
the spiral can extend is to the region where the cross-stream 
shear vanishes.) 

Homogenization is the steady state manifestation of tracer 
penetrating a closed circulation, provided the system is 
strongly advective. For the spatially decaying gyre considered 
here the occurrence of homogenization is closely tied to the 
characteristics of the spiraling plume of tracer which forms 
during spin-up. In particular, where the spiral collapses to a 
streamline marks the outer extent of the homogeneous pool 
that eventually develops. As the diffusivity is increased, the 
size of this pool shrinks. This is consistent with the idea that 
homogenization occurs more readily nearer the center the 
gyre for this type of flow, based on the shorter circulation 
times there. 

APPENDIX: THE OPEN DIFFUSIVE BOUNDARY CONDITION 

The advective-diffusive numerical model is a regional model 
designed to examine a subbasin scale problem with high reso- 
lution and small implicit diffusion. Consequently, the bound- 
aries of the model correspond to open ocean, and the task of 
applying the boundary conditions is not straightforward. Save 
for the small region of inflow and outflow at the ends of the 
boundary current the flow at the edge of the domain is negligi- 
bly small. The velocities here were made identically zero so 
that only diffusion at the boundary need be addressed. 

The centered-differencing scheme used for diffusion in the 
model interior is not applicable at the boundary. A boundary 
scheme was developed in which the concentration of tracer 
there evolves in time in a manner simulating diffusion. This 
enables tracer to diffuse out of the domain. 

The criterion used to specify the boundary concentration 
consists of an extrapolation repeated at each time step. The 
basis for the idea is that, as the simulation progresses, tracer 
accumulates within the domain and proceeds to flux outward 
through this part of the boundary. More specifically, the 
gradient of tracer normal to the open boundary is always 
inward (except initially when it is zero). We thus use what is 
known about the flux of tracer just inside the boundary. In 
particular, we compute the trend of outward flux as the 
boundary is approached, extrapolate this trend, and then 
apply it at the boundary. 

This is the substance of the boundary scheme. Rather than 
use the value of flux, however, a different quantity is extrapo- 

lated which is the ratio of successive concentrations along the 
outward normal (rather than the difference). This results in 
better simulation of the smoothing properties of diffusion [see 
Pickart, 1987]. At each time step then the interior solution is 
determined using the finite difference scheme; then the above 
mentioned trend is computed at each location along the 
boundary, from which the boundary concentration is deter- 
mined. 

The details of this are as follows. Let 0 i represent the value 
of tracer at grid point i along an outward normal to the 
boundary, and 0i+ • be its adjacent value towards the interior 
of the domain (i = 1 denotes the first value inside the bound- 
ary). We define the parameter Ri = 0i/(0•+ • + •), .where • is a 
small number to prevent division by zero, and note that in line 
with what was mentioned above the value of R• will always 
fall between zero and one. A value of zero means that tracer is 

just beginning to penetrate the region; a value of one corre- 
sponds to no flux. At each point along the open boundary, 
after the interior solution has been integrated an increment in 
time, the following procedure is applied: the value of R• is 
computed at the three points prior to the boundary along the 
normal (let R o denote the value of R• at the boundary): if 
R• = 0, then R o is set = 0; if R• is nonzero, then R o is predic- 
ted using a three-point extrapolation: R o = 3R• - 3R 2 + R3; 
if the predicted R o > 1, R o is reset = 1; if the predicted Ro < 
0, R o is reset = 0; finally, the concentration of tracer at the 
boundary is determined from the value of R o. 

For the case of the corner points the extrapolation is per- 
formed along the diagonals. This open boundary scheme was 
tested with purely diffusive examples and led to accurate in- 
terior solutions [see Pickart, 1987]. 
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